JOHNS HOPKINS BLOOMBERG SCHOOL of PUBLIC HEALTH

Emergence of Resistance to BDQ: Considerations from a Modeling Perspective

David Dowdy Symposium on Emerging Resistance to Novel Tuberculosis Drugs March 20, 2024

BDQ Resistance: Five Considerations

- 1. Resistance levels will plateau.
- 2. BDQ resistance is emerging at a comfortable rate.
- 3. BDQ resistance reflects other regimen components.
- 4. Resistance can be lowered with effective treatment.
- 5. Long-term uncertainty remains high.

Tubercle, (1972), 53, 57

1. Resistance levels will plateau.

 As early as the 1960s, resistance to INH and streptomycin had stabilized in many places.
 TB incidence in France (1968): 74 per 100,000

Similar patterns have been seen with all other TB drugs. **ORIGINAL ARTICLES**

TRENDS IN THE PREVALENCE OF PRIMARY DRUG RESISTANCE IN PULMONARY TUBERCULOSIS IN FRANCE FROM 1962 TO 1970: A NATIONAL SURVEY

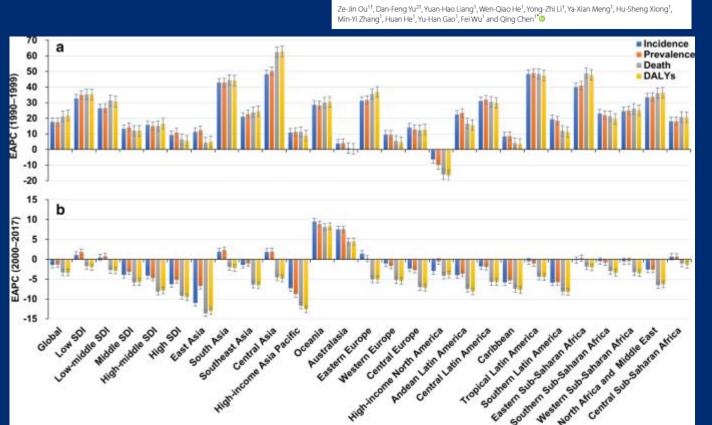
By G. CANETTI, PH. GAY AND M. LE LIRZIN

							Resist	ance to						- -	and I
Year	No. of	Ison	iazid	Strept	omycin	P	AS	1 d	lrug	2 d	rugs	3 di	rugs		otal istant
	strains	No.	%	No.	%	No.	%	No.	%	No.	%	No.	%	No.	%
1962														-	
+	1,385	54	3.9	104	7.5	24	<i>1</i> ·7	89	6.4	33	2.4	9	0.7	131	9.
1963															
1964	1,325	80	6.0	117	8.4	38	2.7	97	7·3	35	2.6	22	1.7	154	$\Pi \cdot \epsilon$
1965	1,565	54	3.5	116	7.4	19	1.2	115	7.4	28	1.8	7	0.5	150	9.6
1966	1,455	58	4·0	109	7.5	13	0-9	95	6.5	33	2.3	6	0.4	134	9.
1967	1,430	65	4.6	96	6.7	30	2.1	79	5.5	41	2.9	10	0.9	130	9 -,
1968	1,570	68	4 ·3	126	8.0	34	2.2	120	7.6	30	1.9	16	1.0	166	10.0
1969	1,527	67	4.4	124	7.9	27	1.7	107	7.0	36	2.4	13	0.8	156	10-2
1970	1,386	55	3.9	90	6.5	15	1.1	95	6.8	25	1.8	5	0.4	125	9.
Total	11,643	501	4.3	882	7.6	200	1.7	797	6.8	261	2.2	88	0.8	1146	9.8

3

1. Resistance levels will plateau.

OPEN OACCESS Freely available online


Estimated number of new TB cases with INH-R per

PLos one

Quantifying the Burden and Trends of Isoniazid Resistant Tuberculosis, 1994–2009

Helen E. Jenkins^{1,2}*, Matteo Zignol³, Ted Cohen^{1,4}

			% of new TB o	ases with NH-R	
		Down	No consistent linear	trend	Up
	Down		Latvia Lithuania Belgium	Denmark Portugal Slovenia	
100,000 population	No consistent linear trend	Hong Kong Israel	Cuba Puerto Rico Uruguay Qatar Estonia Nepal Thailand New Zealand Singapore Ivanovo Oblast – RF Andorra Bosnia and Herzegovina Croatia	Cyprus Iceland Ireland Italy Luxembourg Malta Montenegro Netherlands Norway Poland Serbia Slovakia Switzerland	Peru Canada Oman Austria Czech Republic Finland France Germany
	Up		USA		Botswana Republic of Korea Arkhangelsk Oblast – RF Tomsk Oblast – RF ^a Sweden UK

Infectious Diseases of Povert

RESEARCH ARTICLE

Ou et al. Infect Dis Poverty (2021) 10:24

https://doi.org/10.1186/s40249-021-00803-v

Trends in burden of multidrug-resistant

and worldwide from 1990 to 2017: results from the Global Burden of Disease study

tuberculosis in countries, regions,

Open Access

2. BDQ resistance is emerging at a comfortable rate.

 Acquired BDQ resistance seen in ~2 per 100 treatments.

- Despite being used to treat highly drug-resistant TB
- RIF: ~0.5 per 100 treatments, if treated w/ 3 effective drugs
 ~3 per 100 if INH lost

Baseline During Treatment Study Events [95%-CI] per 100 observations Events [95%-CI] per 100 observations 2.4 [0.5; 6.9] Andres et al., 2020 3.3 [0.9; 8.2] 1.8 [0.0; 9.4] ____ Conradie et al., 2020 5.3 [1.1; 14.6] Conradie et al., 2022 6.3 [2.9; 11.6] 0.0 [0.0; 8.0] Diacon et al., 2012 6.4 [1.3; 17.5] 2.2 [0.1; 11.8] — 0.0 [0.0; 15.4] Guglielmetti et al., 2017 1.0 [0.2; 2.8] Ismail et al., 2018 3.8 [3.0; 4.7] Ismail et al., 2021 2.3 [1.3; 3.7] 2.1 [1.7; 2.5] Kaniga et al., 2021 Kempker et al., 2020 0.0 [0.0; 4.0] 1.6 [0.0; 8.7] 2.2 [0.8; 4.7] Liu et al., 2021 2.2 [0.7; 5.0] 1.0 [0.3; 2.6] Nimmo et al., 2020 2.1 [0.9; 4.0] Veziris et al., 2017 1.0 [0.1; 3.4] 3.7 [2.0; 6.3] Villelas et al., 2017 1.0 [0.1; 3.4] Wu et al., 2021 3.1 [2.1: 4.5] Random effects model 2.4 [1.7; 3.5] 2.1 [1.4; 3.0] 10 15 Α В Heterogeneity: Heterogeneity: $l^2 = 66\%$, t² = 0.1985, p < 0.01 $l^2 = 0\%$, t² = 0, p = 0.97

Perumal R et al. medRxiv 2023; Eur Respir J 2023; 62:2300639 Menzies D et al. PLOS Med 2009; 6:e1000146

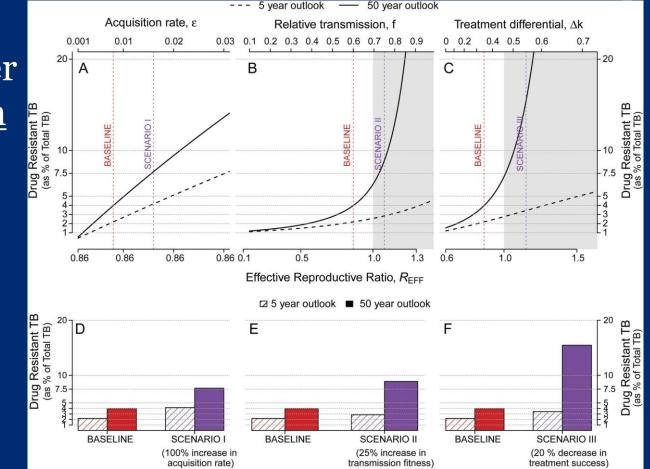
3. BDQ resistance reflects other regimen components.

Across four trials including pretomanid in the regimen:

- Only 3 cases of acquired BDQ resistance, of 859 participants (0.4-1.0 per 100)
- Similar to levels of acquired RIF resistance with 3 effective drugs

Trial	Participant	Regimen	Acquired resistance	Outcome ¹
Nix TB	NX018	BPaL	BDQ	Unfavorable; confirmed relapse at Day 267 (83 d after last dose)
ZeNix	ZX026	BPaL _{600x9}	PMD	Unfavorable; withdrawn during treatment; treatment failure
	ZX079	BPaL _{600x26}	BDQ, PMD	Unfavorable; non-compliant patient who withdrew consent during treatment
	ZX146	BPaL _{1200x9}		Unfavorable; confirmed relapse at Day 539 (182 d after last dose)
SimpliciTB	ST058	6BPaMZ	BDQ, PMD	Unfavorable; withdrawn during treatment; investigator/sponsor decision prompted by patient's poor drug compliance
	ST455	6BPaMZ	PMD	Unfavorable; confirmed relapse at Day 222 (42 d after last dose)
¹ Outcomes	and abbreviati	ons are as de	scribed in Table 3.	

https://doi.org/10.1371/journal.pgph.0002283.t004


Timm J et al. PLOS Glob Public Health 2023; 3:e0002283

3. BDQ resistance reflects other regimen components.

 Most important long-term driver of drug resistance: <u>differential in</u> <u>treatment success</u>

BDQ-R vs BDQ-S

Best safeguard: Use regimens that will be effective if BDQ-R.

Shrestha S et al, Open Forum Infect Dis 2014; 1:0fu073

4. Resistance can be lowered with effective treatment.

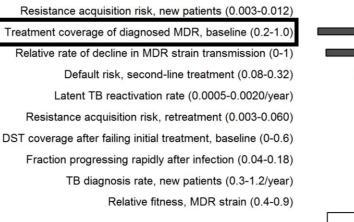
35

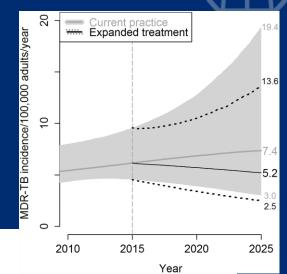
20 15 10

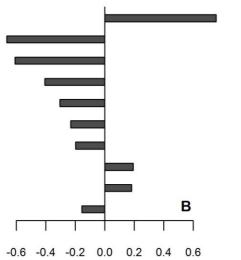
-5 +

South of Vietnam, 1996-2001:
Any resistance: 36% → 26%
RR-TB: 4.5% → 2.0%

New York City, 1991-2003:
Any resistance: 34% → 22%
MDR-TB: 19% → 7%

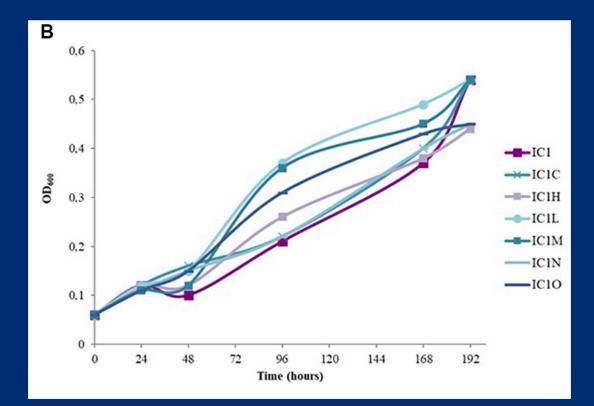

Huong NT et al, J Infect Dis 2006; 194:1226-1232 Munsiff SS et al, Clin Infect Dis 2006; 42:1702-1710


		No.		
Drug-resis	tance pattern	1996 (<i>n</i> = 374)	2001 (<i>n</i> = 888)	Ρ
Susceptib	e to all 4 drugs	239 (63.9)	650 (73.8)	<.01
Resistance	e to any drug	135 (36.1)	238 (26.3)	<.01
Any resist	ance to			
Н		81 (21.6)	154 (16.6)	>.05
R		17 (4.5)	22 (2.0)	>.05
E		5 (1.3)	12 (1.1)	>.05
S		110 (29.4)	173 (19.4)	<.01
Monoresis	stance to			
н		20 (5.3)	59 (6.3)	>.05
R		3 (0.8)	1 (0.1)	>.05
E		0 (0)	O (O)	>.05
S		50 (13.4)	82 (9.5)	>.05
Total		73 (19.5)	142 (15.9)	
		incident cases of MDR 1 prevalent cases of MDR		


4. Resistance can be lowered with effective treatment.

- Most important determinants of MDR emergence:
 - Rate of acquired resistance
 - Treatment coverage of people with MDR-TB
- Key: Ensure that people w/ BDQ-R TB are diagnosed & treated.

Kendall EA et al, PLOS ONE 2017; 12:e0172748



5. Long-term uncertainty remains high.

- Major outstanding questions:
 - Transmission fitness
 - Acquisition of resistance under programmatic conditions
 - Resistance to other drugs used in BDQ-containing regimens
 - Variation by location, strain, etc.

Degiacomi G et al, Front Microbiol 2020; 11:559469

Summary: A Modeler's Take on BDQ Resistance

Short-term indications are reassuring.

Longer-term uncertainty is high.

• Effective diagnosis and treatment of people with BDQ-R TB is a priority.

Decisions should be driven not by fear, but by rational assessment of uncertainty.

