

Creating a healthier world for future generations.

Evidence of adherence related to treatment outcomes

Lower risk

Higher ris

Effectiveness of MERM in DS-TB

1st China RCT Showed 45% Improvement In Adherence Over Standard of Care

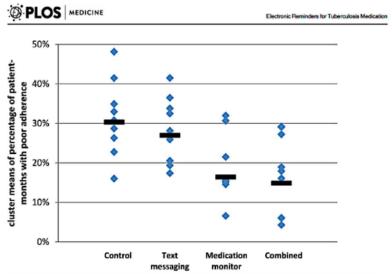


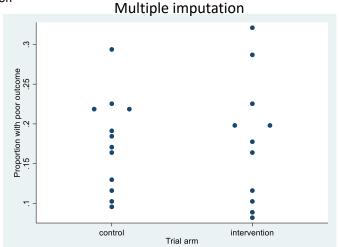
Fig 2. Primary endpoint of poor tuberculosis treatment adherence by study erm. Solid bars represent geometric means of cluster-level proportions.

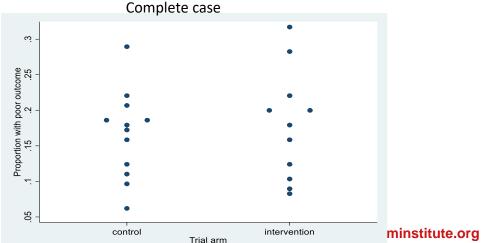
RESEARCH ARTICLE

Effectiveness of Electronic Reminders to Improve Medication Adherence in Tuberculosis Patients: A Cluster-Randomised Trial

Xiaoqiu Liu¹, James J. Lewis², Hui Zhang¹, Wei Lu³, Shun Zhang^{4‡}, Guilan Zheng⁵, Liqiong Bai⁶, Jun Li¹, Xue Li¹, Hongguang Chen¹, Mingming Liu¹, Rong Chen¹, Junying Chi¹, Jian Lu⁷, Shitong Huan⁸, Shiming Cheng¹, Lixia Wang¹, Shiwen Jiang^{1*}, Daniel P. Chin⁸, Katherine L. Fielding²

- 4500 patients
- Rural and urban settings
- Well accepted by both patients (satisfaction 82%) and providers
- Use of a medication monitor reduced poor medication adherence by 40%–50% compared to the standard of care in China's National Tuberculosis Control Program. This reduction was seen for all TB treatment adherence measures in this study."

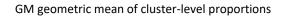

Effectiveness of MERM in DS-TB

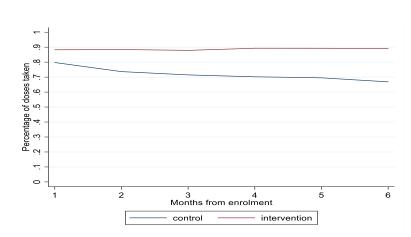


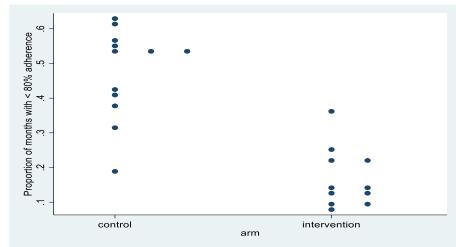
2nd China trial: Primary outcome – Treatment outcomes

	SoC arm n/N ¹ (GM)	Intervention arm n/N¹ (GM)	Unadjusted Risk Ratio (95% CI)	P value	Adjusted risk ratio (95% CI)	P value
Multiple imputation	239/1388 (16%)	224/1298 (16%)	0.99 (0.66, 1.48)	0.96	1.01 (0.73, 1.40)	0.95
Complete case	217/1300 (16%)	216/1238 (16%)	1.03 (0.71, 1.51)	0.85	1.05 (0.78, 1.41)	0.72

¹ for multiple imputation analysis n=imputation-mean of total number of events; GM geometric mean of cluster-level proportions Adjusted for age, sex, occupation, local resident, distance to clinic, education level, household expenditure, and smear result at treatment initiation


Lui X, Lancet Glob Health. 2023 May;11(5):e693-e


Effectiveness of MERM in DS-TB



2 nd China trial: Secondary	outcome: Adherence
--	--------------------

	SoC arm (GM)	Intervention arm (GM)	Unadjusted Risk Ratio (95% CI)	P value	Adjusted risk ratio (95% CI)	P value
Months in which patients missed >20% of doses	2.7/6.0 (46%)	0.9/6.0 (16%)	0.34 (0.24,0.49)	<0.001	0.36 (0.27, 0.50)	<0.001
Doses missed/ doses expected per person	42/160 (27%)	16/160 (11%)	0.40 (0.31, 0.53)	<0.001	0.43 (0.34, 0.53)	<0.001

Lui X, Lancet Glob Health. 2023 May;11(5):e693-e

Effectiveness of MERM in DS-TB (Vietnam)

Table 1 Effectiveness of intervention on TB treatment adherence using different treatment outcome definitions

Endpoint (study group)	Patients <i>n</i>	Geometric mean % (95% CI)	Mean ratio (95% CI)
Proportion of patient months	with at least 6/30 o	doses missed*	
Control	126	35.8 (29.8–41.2)	1.00
Intervention	124	25.8 (19.2–31.8)	0.72 (0.67–0.77)
Proportion of patient months	with at least 14/30	doses missed	
Control	126	20.2 (15.1–25.0)	1.00
Intervention	124	12.4 (7.6–17.0)	0.61 (0.54–0.68)
Proportion of total doses mis	sed		
Control	126	21.2 (18.3–23.9)	1.00
Intervention	124	15.8 (12.9–18.7)	0.75 (0.68–0.80)

^{*} Primary endpoint.

CI = confidence interval.

TB Monitoring Adherence and Treatment Endpoints

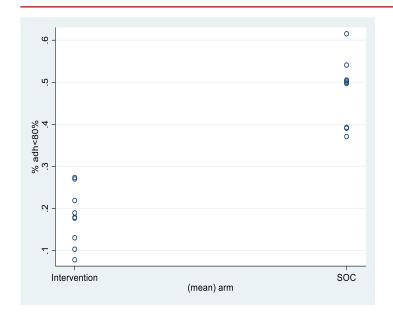
Study design: Pragmatic cluster randomised control trial **Study setting:** 18 primary health clinics (PHC) in 3 **South African** provinces with high number of identified TB cases and with varying prevalence of HIV infection

Target population: Approximately 2610 adults and children with

DS-TB receiving TB treatment from a local PHC

Study Objectives

Primary objective

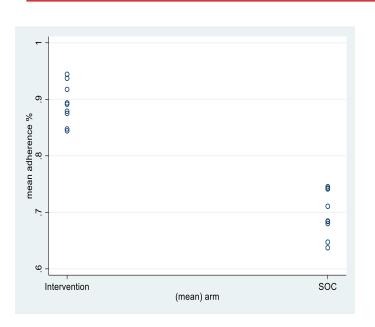

➤ To evaluate whether implementation of the Wisepill evriMED device with real-time monitoring and differentiated care was able to increase the proportion of patients with >80% adherence to DS-TB treatment

Secondary objectives

- ► To evaluate patients who successfully complete DS-TB treatment
- ► To measure unfavourable outcomes 18 months post-enrolment
- ► To explore the feasibility, acceptability and fidelity
- To evaluate cost-effectiveness

Primary: Proportion with <80% Adherence

% of patients with <80% adherence


 log transformation, giving geometric means, and risk ratio (Intervention vs SoC)

Intervention	SoC	Risk ratio (95% CI)	P-value
18.8	48.7	0.37 (0.28-0.49)	<0.0001

Secondary: Overall Percentage Adherence

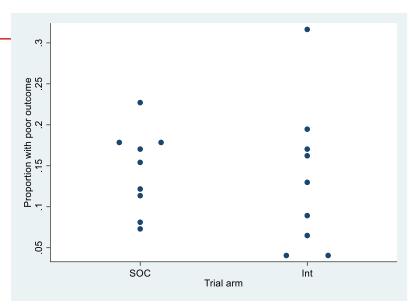
Risk difference:

- Unlogged, arithmetic mean for each cluster, compared by arm
- Effect estimate is difference in means (Intervention SoC)

Intervention	SoC	Mean difference (95% CI)	P-value
88.5%	69.7%	18.8% (15.2%-22.3%)	<0.0001

Geometric mean ratio:

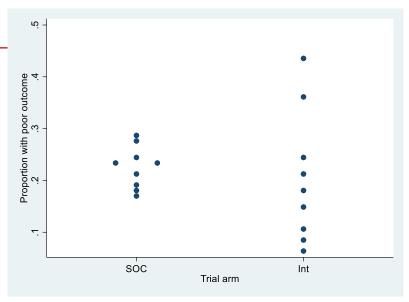
- Log-transformed, geometric mean for each cluster, compared by arm
- Effect estimate is geometric mean ratio (Intervention vs Soc)


Intervention	SoC	Geometric mean ratio (95% CI)	P-value
88.5%	69.7%	1.27 (1.22-1.35)	<0.0001

Poor End of Treatment Outcome

	SoC		Inte	rvention
	% outcome		Ç	% outcome
N	1259		1	1279
n, %	172	13.7%	176	13.8%
Mean (cluster %s)		14.3%		13.5%
Geometric mean				
(cluster %)		13.4%		11.0%

	Risk			
	difference	lower	upper	P-value
Unadjusted (95% CI)	-0.74%	-8.00%	6.49%	0.83
Adjusted (95% CI)*	-0.49%	-6.00%	5.02%	0.85
	Risk ratio	lower	upper	P-value
Unadjusted (95% CI)	0.82	0.46	1.45	0.47
Adjusted (95% CI)*	0.82	0.56	1.22	0.31


^{*} Adjusted for age, sex, TB diagnosis, ethnic group, marital status, HIV/ART status and province

Composite Unfavourable Outcome

		SoC	Intervention		
N	974		1,0	96	
n, %	216	22.2%	216	19.7%	
Mean (cluster %s)	22.6%		20.4%		
Geometric mean					
(cluster %)		22.3%	17.1%		

	Risk			
	difference	lower	upper	P-value
Unadjusted (95% CI)	-2.22%	-11.59%	7.16%	0.62
Adjusted RD (95% CI)*	-1.73%	-9.74%	6.28%	0.65
	Risk ratio	lower	upper	P-value
Unadjusted RR (95% CI)	0.77	0.48	1.23	0.25
Adjusted RR (95% CI)*	0.78	0.53	1.16	0.21

^{*} Adjusted for age, sex, TB diagnosis, ethnic group, marital status, HIV/ART status and province

To implement and evaluate DAT systems using

- medication sleeve/label and smart pill box,
- linked to a web-based adherence platform to create a differentiated response to patient adherence (DAT engagement)

among adults with drug-sensitive TB in South Africa, Tanzania, the Philippines, Ukraine and Ethiopia

Degu Jerene, Kristian van Kalmthout, Jason Alacapa, Natasha Deyanova, Tanyaradzwa Dube, Andrew Mganga, Bianca Tasca, Alexsey Bogdanov, Egwuma Efo, Katya Gamazina, Anna Marie Celine Garfin, Adrian Leung, Jens Levy, Norma Madden, Noriah Maraba, Christopher Finn McQuaid, Liberate Mleoh, Baraka Onjare, Rachel Powers, Yana Terleiva, Job van Rest, Agnes Gebhard, Katherine Fielding, Salome Charalambous

Effectiveness of MERM in DSTB

4 Cluster randomised trials, 220 clusters, 4 countries, 23 804 individuals

www.auruminstitute.org

OTHER CONSIDERATIONS

Acceptability and Feasibility

- Very high levels of acceptability among PWTB
- Very high levels of acceptability among Health care workers
- Very large scale roll-out achieved in Ascent
- Evidence of sustainability: one district in SA implementing despite no mandate from government

Costs

- · Related to standard of Care
- Replacement for DOT very high cost
- Affordability different scenario to TB
 Preventive therapy or Case finding

OVERALL CONCLUSIONS

Mismatch between adherence and end of treatment outcomes – Possible reasons

- Inaccurate adherence measures particularly in control arms
- Poor end of treatment outcome: non-specific outcome
- Special population enrolled less likely to have poor outcomes
- Poor sensitivity of uptake of relapse
- Treatment regimen is very forgiving

What is the way forward?

- Drug resistance TB work
- More important in Bedaquilline or the fourmonth DSTB regimen
- Further work to understand the mismatch possibly using adherence measures
- Improve intervention using more patientcentered designs

ACKNOWLEDGEMENTS

BILL & MELINDA GATES foundation

All persons with TB who participated.
Scientific Advisory Committee: Neil Martinson,
Ali Habib, Jens Levy
District health authorities: City of Cape Town,
eThekwini and Ekurhuleni

ACKNOWLEDGEMENTS TIEST

The ASCENT consortium includes a partnership between KNCV Tuberculosis Foundation. The Aurum Institute, London School of Hygiene & Tropical Medicine, the governments of the implementing countries, and PATH.

The project is supported by Unitaid.

The project would not have been possible without the work of the health facility staff who implemented the intervention, the support of country national TB program offices, the Technical Advisory Group and the participants who participated in the study.

We are thankful to them all.

www.auruminstitute.org